Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(5): 130, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589729

RESUMO

During the course of the isolation of actinobacteria from sweet potato field soils collected from Phra Nakhon Si Ayutthaya province of Thailand, strain TS4A08T was isolated and subjected to a polyphasic taxonomic approach. The 16S rRNA gene sequence analysis of strain TS4A08T revealed that it is closely related to the type strains of Saccharopolyspora aridisoli, and Saccharopolyspora endophytica with 98.7%, and 98.6% similarity, respectively. However, phylogenetic analyses using 16S rRNA gene and genome sequences indicated that strain TS4A08T clustered with Saccharopolyspora flava AS4.1520T (98.2% similarity), well-supported by bootstrap values, and formed distinct line from the two closest strains. The average nucleotide identity (ANI) values and digital DNA-DNA hybridization (dDDH) values between the genome sequences of strain TS4A08T and the closest type strains of S. aridisoli, S. endophytica, and S. flava, were 86.1-93.2% and 33.1-49.6%, respectively, which were less than the threshold for the species delineation. The genome size and the DNA G + C content of strain TS4A08T were 6.6 Mbp and 70.5%, respectively. The strain grew well at 25-37 °C, pH range of 7-9, and NaCl concentration of 0-5% (w/v). Whole-cell hydrolysates contained meso-diaminopimelic acid. The major fatty acids were iso-C16:0, anteiso-C17:0, and iso-C15:0. Strain TS4A08T exhibited phosphatidylcholine in its polar lipid profile, with MK-9(H4) being the predominant isoprenologue. The strain exhibits typical chemotaxonomic properties of the genus Saccharopolyspora, including arabinose, galactose, and ribose as whole-cell sugars. Strain TS4A08T represents a novel species within the genus Saccharopolyspora, for which the name Saccharopolyspora ipomoeae sp. nov. is proposed. The type strain is TS4A08T (= TBRC 17271T = NBRC 115967T).


Assuntos
Actinobacteria , Ipomoea batatas , Saccharopolyspora , Saccharopolyspora/genética , Actinobacteria/genética , Ipomoea batatas/genética , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Tailândia , Ácidos Graxos/química , Fosfolipídeos/química
2.
Curr Microbiol ; 81(3): 92, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315241

RESUMO

Duckweed-associated actinobacteria are co-existing microbes that affect duckweed growth and adaptation. In this study, we aimed to report a novel actinobacterium species and explore its ability to enhance duckweed growth. Strain DW7H6T was isolated from duckweed, Lemna aequinoctialis. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that the strain was most closely related to Actinomycetospora straminea IY07-55T (99.0%), Actinomycetospora chibensis TT04-21T (98.9%), Actinomycetospora lutea TT00-04T (98.8%) and Actinomycetospora callitridis CAP 335T (98.4%). Chemotaxonomic and morphological characteristics of strain DW7H6T were consistent with members of the genus Actinomycetospora, while average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the draft genomes of this strain and its closely related type strains were below the proposed threshold values used for species discrimination. Based on chemotaxonomic, phylogenetic, phenotypic, and genomic evidence obtained, we describe a novel Actinomycetospora species, for which the name Actinomycetospora lemnae sp. nov. is proposed. The type strain is DW7H6T (TBRC 15165T, NBRC 115294T). Additionally, the duckweed-associated actinobacterium strain DW7H6T was able to enhance duckweed growth when compared to the control, in which the number of fronds and biomass dry weight were increased by up to 1.4 and 1.3 fold, respectively. Moreover, several plant-associated gene features in the genome of strain DW7H6T potentially involved in plant-microbe interactions were identified.


Assuntos
Actinobacteria , Actinomycetales , Araceae , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Actinobacteria/genética , Araceae/genética , Araceae/microbiologia , Técnicas de Tipagem Bacteriana
3.
Artigo em Inglês | MEDLINE | ID: mdl-37768174

RESUMO

Two novel actinobacterial strains, designated RB6PN23T and K1PA1T, were isolated from peat swamp soil samples in Thailand and characterized using a polyphasic taxonomic approach. The strains were filamentous Gram-stain-positive bacteria containing ll-diaminopimelic acid in their whole-cell hydrolysates. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strain RB6PN23T was most closely related to Streptomyces rubrisoli (99.1 % sequence similarity) and Streptomyces ferralitis (98.5%), while strain K1PA1T showed 98.8 and 98.7% sequence similarities to Streptomyces coacervatus and Streptomyces griseoruber, respectively. However, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the species-level thresholds (95-96 % ANI and 70 % dDDH). The genomes of strains RB6PN23T and K1PA1T were estimated to be 7.88 Mbp and 7.39 Mbp in size, respectively, with DNA G+C contents of 70.2 and 73.2 mol%. Moreover, strains RB6PN23T and K1PA1T encode 37 and 24 putative biosynthetic gene clusters, respectively, and in silico analysis revealed that these new species have a high potential to produce unique natural products. Genotypic and phenotypic characteristics confirmed that strains RB6PN23T and K1PA1T represented two novel species in the genus Streptomyces. The names proposed for these strains are Streptomyces silvisoli sp. nov. (type strain RB6PN23T=TBRC 17040T=NBRC 116113T) and Streptomyces tropicalis sp. nov. (type strain K1PA1T=TBRC 17041T=NBRC 116114T). Additionally, a giant linear polyene compound, neotetrafibricin A, exhibiting antifungal activity in strain RB6PN23T, was identified through HPLC and quadrupole time-of-flight MS analysis. The crude extract from the culture broth of strain RB6PN23T exhibited strong antifungal activity against Fusarium verticillioides, Fusarium fujikuroi and Bipolaris zeicola. This finding suggests that strain RB6PN23T could be a promising candidate for biological control of fungal diseases.

4.
J Antibiot (Tokyo) ; 76(11): 658-664, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596418

RESUMO

A novel actinobacterium, designated as strain WRP15-2T, was isolated from rhizosphere soil of rice plant (Oryza rufipogon). The strain was Gram-stain-positive, aerobic, and non-motile. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain WRP15-2T fell into the genus Saccharopolyspora. The strain shared the highest 16S rRNA gene sequence similarity with the type strains Saccharopolyspora kobensis JCM 9109T (99.1%), Saccharopolyspora indica VRC122T (98.9%), and Saccharopolyspora antimicrobica DSM 45119T (98.7%). However, the digital DNA-DNA hybridization and average nucleotide identity values among these strains confirmed that the microorganism represented a novel member of the genus Saccharopolyspora. Chemotaxonomic data revealed that strain WRP15-2T possessed MK-9(H4) as the predominant menaquinone. It contained meso-diaminopimelic acid as the diagnostic diaminopimelic acid and arabinose, galactose, and ribose as predominant whole-cell sugars. The detected phospholipids were dominated by phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxy-phosphatidylmethylethanolamine, and phosphatidylcholine. The predominant cellular fatty acids were iso-C16:0, C16:0, and iso-C15:0. The G + C content of the genomic DNA was 69.5%. Based on these genotypic and phenotypic data, it is supported that strain WRP15-2T represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora oryzae sp. nov. is proposed. The type strain is WRP15-2T ( = TBRC 15728T = NBRC 115560T).


Assuntos
Oryza , Saccharopolyspora , Fosfatidiletanolaminas , Saccharopolyspora/genética , Rizosfera , Filogenia , RNA Ribossômico 16S/genética , Ácido Diaminopimélico , DNA Bacteriano/genética , Ácidos Graxos , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
5.
Artigo em Inglês | MEDLINE | ID: mdl-36748589

RESUMO

The taxonomic position of a novel actinomycete, designated strain RS10V-4T, was determined using a polyphasic approach. Strain RS10V-4T was isolated from paddy rhizosphere soil of rice plant (Oryzae sativa L.). The morphological, physiological and chemotaxonomic properties were consistent with its classification in the genus Streptomyces. On the basis of 16S rRNA gene sequence analysis, strain RS10V-4T belongs to the genus Streptomyces and had the highest sequence similarity to Streptomyces noursei NBRC 15452T (98.3 %). The G+C content of the genomic DNA was 73.8 %. Digital DNA-DNA hybridization and average nucleotide identity values between the genome sequences of strain RS10V-4T and S.noursei ATCC 11455T were lower than the recommendation threshold values for the recognition of species within the same genus. The whole-cell hydrolysates of strain RS10V-4 T contained ll -diaminopimelic acid as the diagnostic diamino acid and the whole-cell sugars were glucose and ribose. The predominant menaquinones were MK-9(H6) and MK-9(H8). The predominant cellular fatty acids (>10 %) were iso-C16 : 0, anteiso-C15 : 0, iso-C14 : 0 and iso-C15 : 0. The polar lipids of strain RS10V-4T contained diphosphatidylglycerol, hydroxyphosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, an unidentified aminolipid, two unidentified lipids and an unidentified phospholipid. On the basis of these phenotypic and genotypic characteristics, it is supported that strain RS10V-4T represents a novel species of the genus Streptomyces, for which the name Streptomyces rhizoryzae sp. nov. is proposed. The type strain is RS10V-4T (=TBRC 15167T=NBRC 115345T). In addition, the comparison of the whole genome sequences and phenotypic features suggested that S. noursei and S. albulus belong to the same species. Therefore, it is proposed that S. albulus is reclassified as a later heterotypic synonym of S. noursei.


Assuntos
Ácidos Graxos , Streptomyces , Ácidos Graxos/química , Rizosfera , RNA Ribossômico 16S/genética , Solo , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...